\(\int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx\) [11]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 38, antiderivative size = 140 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=-\frac {2 a^2 \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{15 c f \sqrt {a+a \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}{5 c f}-\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{5 c f} \]

[Out]

-1/5*cos(f*x+e)*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(5/2)/c/f-2/15*a^2*cos(f*x+e)*(c-c*sin(f*x+e))^(5/2)/c
/f/(a+a*sin(f*x+e))^(1/2)-1/5*a*cos(f*x+e)*(c-c*sin(f*x+e))^(5/2)*(a+a*sin(f*x+e))^(1/2)/c/f

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {2920, 2819, 2817} \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=-\frac {2 a^2 \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{15 c f \sqrt {a \sin (e+f x)+a}}-\frac {\cos (e+f x) (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{5/2}}{5 c f}-\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{5/2}}{5 c f} \]

[In]

Int[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(-2*a^2*Cos[e + f*x]*(c - c*Sin[e + f*x])^(5/2))/(15*c*f*Sqrt[a + a*Sin[e + f*x]]) - (a*Cos[e + f*x]*Sqrt[a +
a*Sin[e + f*x]]*(c - c*Sin[e + f*x])^(5/2))/(5*c*f) - (Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e +
f*x])^(5/2))/(5*c*f)

Rule 2817

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
 f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]

Rule 2819

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Dist[a*((2*m - 1)/(
m + n)), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
 EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] &&  !LtQ[n, -1] &&  !(IGtQ[n - 1/2, 0] && LtQ[n, m
]) &&  !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\int (a+a \sin (e+f x))^{5/2} (c-c \sin (e+f x))^{5/2} \, dx}{a c} \\ & = -\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{5 c f}+\frac {4 \int (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2} \, dx}{5 c} \\ & = -\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}{5 c f}-\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{5 c f}+\frac {(2 a) \int \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2} \, dx}{5 c} \\ & = -\frac {2 a^2 \cos (e+f x) (c-c \sin (e+f x))^{5/2}}{15 c f \sqrt {a+a \sin (e+f x)}}-\frac {a \cos (e+f x) \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{5/2}}{5 c f}-\frac {\cos (e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{5/2}}{5 c f} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.54 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.58 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=-\frac {c \sec ^2(e+f x) (-1+\sin (e+f x)) (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)} \left (15-10 \sin ^2(e+f x)+3 \sin ^4(e+f x)\right ) \tan (e+f x)}{15 f} \]

[In]

Integrate[Cos[e + f*x]^2*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2),x]

[Out]

-1/15*(c*Sec[e + f*x]^2*(-1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]]*(15 - 10*Sin
[e + f*x]^2 + 3*Sin[e + f*x]^4)*Tan[e + f*x])/f

Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.44

method result size
default \(\frac {c a \left (3 \left (\cos ^{4}\left (f x +e \right )\right )+4 \left (\cos ^{2}\left (f x +e \right )\right )+8\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \tan \left (f x +e \right )}{15 f}\) \(61\)

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/15/f*c*a*(3*cos(f*x+e)^4+4*cos(f*x+e)^2+8)*(-c*(sin(f*x+e)-1))^(1/2)*(a*(1+sin(f*x+e)))^(1/2)*tan(f*x+e)

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.52 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=\frac {{\left (3 \, a c \cos \left (f x + e\right )^{4} + 4 \, a c \cos \left (f x + e\right )^{2} + 8 \, a c\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{15 \, f \cos \left (f x + e\right )} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/15*(3*a*c*cos(f*x + e)^4 + 4*a*c*cos(f*x + e)^2 + 8*a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*
sin(f*x + e)/(f*cos(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(3/2)*(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=\int { {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}} \cos \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)*cos(f*x + e)^2, x)

Giac [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.03 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=\frac {16 \, {\left (6 \, a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{10} - 15 \, a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{8} + 10 \, a c \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{6}\right )} \sqrt {a} \sqrt {c}}{15 \, f} \]

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(3/2)*(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

16/15*(6*a*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1
/2*e)^10 - 15*a*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*
x + 1/2*e)^8 + 10*a*c*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/
2*f*x + 1/2*e)^6)*sqrt(a)*sqrt(c)/f

Mupad [B] (verification not implemented)

Time = 1.58 (sec) , antiderivative size = 79, normalized size of antiderivative = 0.56 \[ \int \cos ^2(e+f x) (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2} \, dx=\frac {a\,c\,\sqrt {a\,\left (\sin \left (e+f\,x\right )+1\right )}\,\sqrt {-c\,\left (\sin \left (e+f\,x\right )-1\right )}\,\left (175\,\sin \left (2\,e+2\,f\,x\right )+28\,\sin \left (4\,e+4\,f\,x\right )+3\,\sin \left (6\,e+6\,f\,x\right )\right )}{240\,f\,\left (\cos \left (2\,e+2\,f\,x\right )+1\right )} \]

[In]

int(cos(e + f*x)^2*(a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2),x)

[Out]

(a*c*(a*(sin(e + f*x) + 1))^(1/2)*(-c*(sin(e + f*x) - 1))^(1/2)*(175*sin(2*e + 2*f*x) + 28*sin(4*e + 4*f*x) +
3*sin(6*e + 6*f*x)))/(240*f*(cos(2*e + 2*f*x) + 1))